LO:Deconsitruct Word Questions
Deconstructing Word Questions

$$
\text { Year } 6
$$

Task Build-Up
DECONSTRUCTING WORD QUESTIONS - Y6
TASK BUILD-UP
More Than, Less Than
Money TransactionsMulti-Step Multiplicative
Scaling and Ratio
Interpreting Remainders
Missing Fraction
Fractions of a Quantity
Multi-Step Fractions
Inverse
Compare the Info

Fixed Amount + Variable Amount
Multi-Step Measures
Hours and Minutes
Converting Units of Time
Area and Perimeter
Volume
Angle and Turn
Derive Coordinates
Interpreting Graphs
The Mean

Becky collected 24 shells.
Becky collected 7 shells fewer than Abby. How many shells did Abby collect?

Becky collected 24 shells.
Becky collected 7 shells fewer than Abby. How many shells did Abby collect?

Which bar model represents the question?

Mike has 30 stickers.
Mike has 12 more stickers than James. How many stickers do they have in total?

Mike has 30 stickers.
Mike has 12 more stickers than James. How many stickers do they have in total?

Which bar model represents the question?

Sita and Holly have 14 grapes in total.
Sita has 4 more grapes than Holly. How many grapes does Holly have?

Sita and Holly have 14 grapes in total.
Sita has 4 more grapes than Holly. How many grapes does Holly have?

Which bar model represents the question?

More Than, Less Than

Mark and Karl have £80 in total.
Mark has £ 10 more than Karl.
How much money does Mark have?

More Than, Less Than

Mark and Karl have £80 in total.
Mark has £ 10 more than Karl. How much money does Mark have?

Mark and Karl have £80 in total.
Mark has $£ 10$ more than Karl. How much money does Mark have?

Mark and Karl have £80 in total.
Mark has $£ 10$ more than Karl. How much money does Mark have?

Mark and Karl have £80 in total.
Mark has $£ 10$ more than Karl. How much money does Mark have?

Val, Holly and Kara have £90 in total.
Val has £ 10 less than Holly. Holly has $£ 10$ less than Kara. How much money does Val have?

Val, Holly and Kara have £90 in total.
Val has $£ 10$ less than Holly.
Holly has £ 10 less than Kara.
How much money does Val have?

Val, Holly and Kara have £90 in total.
Val has $£ 10$ less than Holly.
Holly has £ 10 less than Kara.
How much money does Val have?

Val, Holly and Kara have £90 in total.
Val has $£ 10$ less than Holly.
Holly has £ 10 less than Kara.
How much money does Val have?

Val, Holly and Kara have £90 in total.
Val has $£ 10$ less than Holly.
Holly has £ 10 less than Kara.
How much money does Val have?

Swimming Pool Prices Adults: £6.50
 Children: £3.50

Janet and her 3 children go swimming.
\square

1
What could the question be?

Swimming Pool Prices Adults: £6.50
 Children: £3.50

Janet and her 3 children go swimming.

How much change does she get?

Swimming Pool Prices Adults: £6.50
 Children: £3.50

Janet and her 3 children go swimming.

How much change does she get?

What information must be given?

Swimming Pool Prices Adults: £6.50
 Children: $£ 3.50$

Janet and her 3 children go swimming. She pays with a $£ 20$ note.

How much change does she get?

Swimming Pool Prices
 Adults: £6.50
 Children: $£ 3.50$

Janet and her 3 children go swimming. She pays with a $£ 20$ note.

How much change does she get?

£20

$£ 6.50$	$£ 3.50$	$£ 3.50$	$£ 3.50$

Swimming Pool Prices
 Adults: £6.50
 Children: $£ 3.50$

Janet and her 3 children go swimming. She pays with a $£ 20$ note.

How much change does she get?

£20

$£ 6.50$
£3.50
£3.50
£3.50
£3

Money Transactions

missing information
missing question
missing question

Build 1

Trousers

Shirt
missing information
missing question
missing information
missing question

Money Transactions

missing information

How much change does he get?

Lee has £50.

How many shirts does he buy?

Money Transactions

Nick has £40. He buys two shirts. How much change does he get?

Trousers

Lee has £50.
missing question

missing information

How many shirts does he buy?

Money Transactions

Trousers

Lee has £50.
missing question

missing information

How many shirts does he buy?

Money Transactions

Nick has £40. He buys two shirts. How much change does he get? Answer: £4

Lee has £50. How many pairs of trousers can he afford?

What could this say?

missing information

How many shirts does he buy?

Money Transactions

Nick has £40. He buys two shirts. How much change does he get? Answer: £4

Lee has £50.
How many pairs of trousers can he afford?
Answer: 1 pair

What could this say?

missing information

How many shirts does he buy?

Money Transactions

Nick has £40. He buys two shirts. How much change does he get? Answer: £4

Build 1

Trousers

Lee has £50.
How many pairs of trousers can he afford?
Answer: 1 pair

Max buys a pair of trousers and some shirts. He spends £80. How many shirts does he buy?

Money Transactions

Nick has £40. He buys two shirts. How much change does he get? Answer: £4

Lee has £50.
How many pairs of trousers can he afford?
Answer: 1 pair

Max buys a pair of trousers and some shirts. He spends £80. How many shirts does he buy?
Answer: 3 shirts

Multi-Step Multiplicative

Lee has a 2 year-old son called Harvey.
Lee is twice as tall and five times as heavy as Harvey.

One-Step Question

Multi-Step Question

What could the questions be?

Multi-Step Multiplicative

Lee has a 2 year-old son called Harvey.

Lee is twice as tall and five times as heavy as Harvey.

Lee is 170 cm tall. How tall is Harvey?

Multi-Step Question

Multi-Step Multiplicative

Lee has a 2 year-old son called Harvey.

Lee is twice as tall and five times as heavy as Harvey.

Lee is 170 cm tall. How tall is Harvey?

$170 \mathrm{~cm} \div 2$ $=85 \mathrm{~cm}$

Multi-Step Question

Lee has a 2 year-old son called Harvey.

Lee is twice as tall and five times as heavy as Harvey.

Lee is 170 cm tall. How tall is Harvey?
$170 \mathrm{~cm} \div 2$ $=85 \mathrm{~cm}$

Harvey weighs 14 kg . How much heavier is Lee than Harvey?

Lee has a 2 year-old son called Harvey.

Lee is twice as tall and five times as heavy as Harvey.

Lee is 170 cm tall. How tall is Harvey?
$170 \mathrm{~cm} \div 2$ $=85 \mathrm{~cm}$

Harvey weighs 14 kg . How much heavier is Lee than Harvey?

Step 1: Lee's weight is $14 \mathrm{~kg} \times 5=70 \mathrm{~kg}$

Lee has a 2 year-old son called Harvey.
Lee is twice as tall and five times as heavy as Harvey.

Lee is 170 cm tall. How tall is Harvey?
$170 \mathrm{~cm} \div 2$ $=85 \mathrm{~cm}$

Harvey weighs 14 kg . How much heavier is Lee than Harvey?

Step 1: Lee's weight is $14 \mathrm{~kg} \times 5=70 \mathrm{~kg}$
Step 2: The difference is $70 \mathrm{~kg}-14 \mathrm{~kg}=56 \mathrm{~kg}$

Multi-Step Multiplicative

Build 1

Zack gets to work either by cycling or driving. It takes Zack 3 times as long to get to work when he cycles.

Multi-Step Question

What could the question be?

Zack gets to work either by cycling or driving. It takes Zack 3 times as long to get to work when he cycles.

How much longer does it take Zack to cycle to work than to drive?

Zack gets to work either by cycling or driving.
It takes Zack 3 times as long to get to work when he cycles.

How much longer does it take Zack to cycle to work than to drive?

1
What information must be given?

Zack gets to work either by cycling or driving.
It takes Zack 3 times as long to get to work when he cycles.

It takes Zack 20 minutes to drive to work.

How much longer does it take Zack to cycle to work than to drive?

Zack gets to work either by cycling or driving.
It takes Zack 3 times as long to get to work when he cycles.

It takes Zack 20 minutes to drive to work.

How much longer does it take Zack to cycle to work than to drive?

Step 1: Zack's cycle takes $20 \times 3=60$ minutes

Zack gets to work either by cycling or driving.
It takes Zack 3 times as long to get to work when he cycles.

It takes Zack 20 minutes to drive to work.

How much longer does it take Zack to cycle to work than to drive?

Step 1: Zack's cycle takes $20 \times 3=60$ minutes Step 2: The difference is $60-20=40$ minutes

A choir is holding a concert for charity.
Adult tickets cost $\mathbf{£ 1 2}$. Child tickets cost $\mathbf{£ 7}$.

How much money is raised?

What information must be given?

A choir is holding a concert for charity.
Adult tickets cost $\mathbf{£ 1 2}$. Child tickets cost $\mathbf{£ 7}$.
130 adult tickets and 70 child tickets are sold.
How much money is raised?

A choir is holding a concert for charity.
Adult tickets cost $\mathbf{£ 1 2}$. Child tickets cost $\mathbf{£ 7}$.
130 adult tickets and 70 child tickets are sold.
How much money is raised?

$$
\begin{aligned}
& 130 \times £ 12=£ 1560 \\
& 70 \times £ 7=£ 490 \quad £ 1560+£ 490=\underline{£ 2050}
\end{aligned}
$$

A circus is holding a concert for charity.
Adult tickets cost $\mathbf{£ 1 1}$. Child tickets cost $\mathbf{£ 6}$.

How many child tickets are sold?

What information must be given?

A circus is holding a concert for charity.
Adult tickets cost $\mathbf{£ 1 1}$. Child tickets cost $\mathbf{£ 6}$.
120 adult tickets are sold. In total, $\mathbf{£ 1 8 0 0}$ is raised.
How many child tickets are sold?

A circus is holding a concert for charity.
Adult tickets cost $\mathbf{£ 1 1}$. Child tickets cost $\mathbf{£ 6}$.
120 adult tickets are sold. In total, $\mathbf{£ 1 8 0 0}$ is raised.
How many child tickets are sold?

$$
\begin{aligned}
& 120 \times £ 11=£ 1320 \\
& £ 1800-£ 1320=£ 480 \\
& £ 480 \div 6=80 \text { child tickets }
\end{aligned}
$$

Max has $\mathbf{3}$ times as many conkers as Ben.

How many conkers does Ben have?

What information
could be hidden?

Scaling and Ratio

Max has 3 times as many conkers as Ben. Altogether, they have 12 conkers. How many conkers does Ben have?

Max has 3 times as many conkers as Ben. Altogether, they have 12 conkers. How many conkers does Ben have?

Which picture represents the question?

12

For every 3 seeds that were planted, 1 seed grew.
60 seeds were planted.

How many seeds grew?

For every 3 seeds that were planted, 1 seed grew.

60 seeds were planted.

How many seeds grew?

Which picture represents the question?

Scaling and Ratio

There are $\mathbf{3}$ times as many children as adults at the park.

How many adults at the park?

What information could be hidden?

There are $\mathbf{3}$ times as many children as adults at the park.
There are \square more children than adults at the park.
How many adults at the park?

There are $\mathbf{3}$ times as many children as adults at the park.
There are \square more children than adults at the park.
How many adults at the park?

What could the missing number be?
What number could the missing number not be?

There are $\mathbf{3}$ times as many children as adults at the park.
There are 18 more children than adults at the park.
How many adults at the park?

There are $\mathbf{3}$ times as many children as adults at the park.
There are 18 more children than adults at the park.
How many adults at the park?

There are $\mathbf{3}$ times as many children as adults at the park.
There are 18 more children than adults at the park.
How many adults at the park?

There are $\mathbf{3}$ times as many children as adults at the park.
There are 18 more children than adults at the park.
How many adults at the park?

There are $\mathbf{3}$ times as many children as adults at the park.
There are 18 more children than adults at the park.
How many adults at the park?

9 adults

There were twice as many children as adults in the swimming pool. Then, 6 adults got in the pool.

How many children are there in the swimming pool?

What information could be hidden?

There were twice as many children as adults in the swimming pool.

Then, 6 adults got in the pool.
Now there are the same number of children as adults in the swimming pool.
How many children are there in the swimming pool?

There were twice as many children as adults in the swimming pool.

Then, 6 adults got in the pool.
Now there are the same number of children as adults in the swimming pool.
How many children are there in the swimming pool?

There were twice as many children as adults in the swimming pool.

Then, 6 adults got in the pool.
Now there are the same number of children as adults in the swimming pool.

How many children are there in the swimming pool?

There were twice as many children as adults in the swimming pool.

Then, 6 adults got in the pool.
Now there are the same number of children as adults in the swimming pool.

How many children are there in the swimming pool?

There were twice as many children as adults in the swimming pool.

Then, 6 adults got in the pool.
Now there are the same number of children as adults in the swimming pool.

How many children are there in the swimming pool?

12 children

Give a possible answer.

18 children can be seated on a bus. \square buses needed.

90 children going on a school trip.
18 children can be seated on a bus.
5 buses needed.

75 children going on a school trip.
18 children can be seated on a bus.
\square buses needed.

75 children going on a school trip.
18 children can be seated on a bus. \square buses needed.

75 children going on a school trip.
18 children can be seated on a bus.
5 buses needed.

How many 18 s in 75 ? $18 \times 4=72 \quad 18 \times 5=90$
5 buses needed.

Interpreting Remainders

4 people go to a café.
In total, they spend £41
Each person needs to pay \square

4 people go to a café.
In total, they spend $£ 41$
Each person needs to pay
Which Answer?
$£ 10$

4 people go to a café.
In total, they spend £41
Each person needs to pay $£ 10.25$
Which Answer?

Zara is making drinks. She has litres of juice.

How many drinks can Zara make?

What information must be given?

Interpreting Remainders

Zara is making drinks.
She has litres of juice.
There is \quad ml of juice in each drink.
How many drinks can Zara make?

Zara is making drinks.
She has litres of juice.
There is \quad ml of juice in each drink.
How many drinks can Zara make?
Answer: 11 drinks

The hidden numbers could be... and...

Zara is making drinks.
She has 4 litres of juice.
There is \quad ml of juice in each drink.
How many drinks can Zara make?
Answer: 11 drinks

The hidden number could be...

Zara is making drinks.
She has 4 litres of juice.
There is $\mathbf{3 5 0 \mathrm { ml }}$ of juice in each drink.
How many drinks can Zara make?
Answer: 11 drinks
$350 \mathrm{ml} \times 11=3850 \mathrm{ml}$
$350 \mathrm{ml} \times 12=4200 \mathrm{ml}$ (more than 4 litres)

Convert one / two of the fractions into equivalent fractions.

Convert one / two of the fractions into equivalent fractions.

Convert one / two of the fractions into equivalent fractions.

$\frac{6}{8}+\frac{1}{8}=$

Convert one / two of the fractions into equivalent fractions.

$\frac{6}{8}+\frac{1}{8}=\frac{7}{8}$

Convert one / two of the fractions into equivalent fractions.

Convert one / two of the fractions into equivalent fractions.

$\frac{\square}{2}+\frac{\square}{\square}+\frac{\square}{\square}=1 \quad$| Convert one / two of |
| :--- |
| the fractions into |
| equivalent fractions. |

$$
\frac{16}{24}+\frac{3}{24}+\square=1
$$

$\frac{2}{2}+\frac{\boxed{1}}{2}+\frac{\boxed{5}}{24}=1 \quad$| Convert one / two of |
| :--- |
| the fractions into |

$$
\frac{16}{24}+\frac{3}{24}+\frac{5}{24}=1
$$

There are $\mathbf{2 4}$ children at running club. $\frac{3}{4}$ of the children at running club are girls. How many girls go to running club?

There are $\mathbf{2 4}$ children at running club.
$\frac{3}{4}$ of the children at running club are girls.
How many girls go to running club?
24 children

There are $\mathbf{2 4}$ children at running club. $\frac{3}{4}$ of the children at running club are girls. How many girls go to running club?

24 children

There are $\mathbf{2 4}$ children at running club. $\frac{3}{4}$ of the children at running club are girls. How many girls go to running club?

24 children

Ben had $\mathbf{£ 2 4 .}$
Then, he spent $\frac{2}{3}$ of his money on a t-shirt. How much money did Ben have left?

Ben had $£ 24$.
Then, he spent $\frac{\mathbf{2}}{\mathbf{3}}$ of his money on a t-shirt. How much money did Ben have left? $£ 24$

Ben had $£ 24$.
Then, he spent $\frac{\mathbf{2}}{\mathbf{3}}$ of his money on a t-shirt. How much money did Ben have left?

£24

Ben had $£ 24$.
Then, he spent $\frac{\mathbf{2}}{\mathbf{3}}$ of his money on a t-shirt. How much money did Ben have left?

£24

There are $\mathbf{2 4}$ right-handed children in the class. $\frac{3}{4}$ of the children in the class are right-handed. How many children are there in the class?

There are $\mathbf{2 4}$ right-handed children in the class. $\frac{3}{4}$ of the children in the class are right-handed. How many children are there in the class?
\square children

There are $\mathbf{2 4}$ right-handed children in the class. $\frac{3}{4}$ of the children in the class are right-handed. How many children are there in the class?
\square children

There are $\mathbf{2 4}$ right-handed children in the class. $\frac{3}{4}$ of the children in the class are right-handed. How many children are there in the class?

32 children

Fractions of a Quantity

James ate $\frac{\mathbf{2}}{\mathbf{3}}$ of the grapes in the pack.
There were 36 grapes in the pack
How many grapes did he eat?

Fractions of a Quantity

James ate $\frac{\mathbf{2}}{\mathbf{3}}$ of the grapes in the pack.
There were 36 grapes in the pack How many grapes did he eat?

Which bar model represents the question?

Fractions of a Quantity

Zara's book is 60 pages long.
Zara has read $\frac{3}{4}$ of her book.
How many pages does Zara have left to read?

Fractions of a Quantity

Zara's book is 60 pages long.
Zara has read $\frac{3}{4}$ of her book.
How many pages does Zara have left to read?

Which bar model represents the question?

Fractions of a Quantity

For every 2 girls at the party, there is 1 boy.
There are 24 girls at the party.
How many boys are there at the party?

For every 2 girls at the party, there is 1 boy.
There are 24 girls at the party.
How many boys are there at the party?

Which bar model represents the question?

Oliver had £45.
He spent $\frac{1}{3}$ of his money on a watch.
He spent £12 on a cap.
How much money does he have left?

Freddy had £45.
He spent £ 12 on a cap.
He spent $\frac{1}{3}$ of the remaining money on a watch.
How much money does he have left?

Oliver had £45.
He spent $\frac{1}{3}$ of his money on a watch.
He spent $£ 12$ on a cap.
How much money does he have left?

Freddy had £45.
He spent $£ 12$ on a cap.
He spent $\frac{1}{3}$ of the remaining money on a watch.
How much money does he have left?

Oliver had £45.
He spent $\frac{1}{3}$ of his money on a watch.
He spent £12 on a cap.
How much money does he have left?

Freddy had £45.
He spent £ 12 on a cap.
He spent $\frac{1}{3}$ of the remaining money on a watch.
How much money does he have left?

Oliver had £45.
He spent $\frac{1}{3}$ of his money on a watch.
He spent £12 on a cap.
How much money does he have left?

$$
£ 45
$$

Freddy had £45.
He spent £ 12 on a cap.
He spent $\frac{1}{3}$ of the remaining money on
£45
 a watch.
How much money does he have left?

Oliver had £45.
He spent $\frac{1}{3}$ of his money on a watch.
He spent £12 on a cap.
How much money does he have left?

Freddy had £45.
He spent £ 12 on a cap.
He spent $\frac{1}{3}$ of the remaining money on a watch.

How much money does he have left?

Oliver had £45.
He spent $\frac{1}{3}$ of his money on a watch.
He spent £12 on a cap.
How much money does he have left?

Freddy had £45.
He spent £ 12 on a cap.
He spent $\frac{1}{3}$ of the remaining money on a watch.
How much money does he have left?

Multi-Step Fractions

There were some stickers in a pack. Zara used $\frac{2}{3}$ of the stickers.
There were 10 stickers left.
How many stickers were in the pack?

Multi-Step Fractions

Build 2

There were some stickers in a pack. Zara used $\frac{2}{3}$ of the stickers.
There were 10 stickers left. How many stickers were in the pack?

Multi-Step Fractions

There were some stickers in a pack. Zara used $\frac{2}{3}$ of the stickers.
There were 10 stickers left. How many stickers were in the pack?

There were some stickers in a pack.
30 stickers

How many stickers were in the pack?
Zara used $\frac{2}{3}$ of the stickers.
There were 10 stickers left.

There were some stickers in a pack.

30 stickers

Zara used $\frac{2}{3}$ of the stickers.
There were 10 stickers left. How many stickers were in the pack?

Kelly had some money.
Kelly spent $\frac{2}{3}$ of her money on a coat.
She spent $£ 5$ on a scarf.
Kelly had £ 10 left.
How much money did Kelly have?

There were some stickers in a pack.

30 stickers

Zara used $\frac{2}{3}$ of the stickers.
There were 10 stickers left. How many stickers were in the pack?

Kelly had some money.
Kelly spent $\frac{2}{3}$ of her money on a coat.

Tom had \square He was given $\mathbf{£ 3 0}$ for his birthday. Then he spent half of his money on a bike. Tom has $£ 60$ left.

Tom had \square
He was given $\mathbf{£ 3 0}$ for his birthday.
Then he spent half of his money on a bike. Tom has $\mathbf{£ 6 0}$ left.

Money Tom had

Tom had \square
He was given $\mathbf{£ 3 0}$ for his birthday.
Then he spent half of his money on a bike. Tom has $\mathbf{£ 6 0}$ left.

Money Tom had

Tom had He was given $\mathbf{£ 3 0}$ for his birthday. Then he spent half of his money on a bike. Tom has $\mathbf{£ 6 0}$ left.

Money Tom had
 £30

Cost of bike

£60 left

Tom had He was given $\mathbf{£ 3 0}$ for his birthday. Then he spent half of his money on a bike. Tom has $\mathbf{£ 6 0}$ left.

Tom had $£ 90$ He was given $\mathbf{£ 3 0}$ for his birthday. Then he spent half of his money on a bike. Tom has $\mathbf{£ 6 0}$ left.

My number was
I multiply my number by 4
Then I subtract $\mathbf{1 5}$
Now my number is $\mathbf{2 1}$

My number was
I multiply my number by 4
Then I subtract $\mathbf{1 5}$
Now my number is $\mathbf{2 1}$

My number was \square
I multiply my number by 4
Then I subtract 15
Now my number is $\mathbf{2 1}$

My number was
I multiply my number by 4
Then I subtract $\mathbf{1 5}$
Now my number is $\mathbf{2 1}$

My number was
I multiply my number by 4
Then I subtract $\mathbf{1 5}$
Now my number is $\mathbf{2 1}$

My number was 9
I multiply my number by 4
Then I subtract $\mathbf{1 5}$
Now my number is $\mathbf{2 1}$

Jen thinks of a number.

She multiplies her number by 3
Then she adds 2
Now Jen's number is \square

Then she multiplies her number by 3
Now Jen's number is
'The blue/red number will be larger because...'

Jen thinks of a number.

She multiplies her number by 3
Then she adds 2
Now Jen's number is \square

She adds 2
Then she multiplies her number by 3
Now Jen's number is

Jen thinks of a number.

She multiplies her number by 3
Then she adds 2
Now Jen's number is \square

She adds 2
Then she multiplies her number by 3
Now Jen's number is

Jen thinks of a number.

She multiplies her number by 3
Then she adds 2
Now Jen's number is \square

She adds 2
Then she multiplies her number by 3
Now Jen's number is \square

Jen thinks of a number.

She multiplies her number by 3
Then she adds 2
Now Jen's number is 20

She adds 2
Then she multiplies her number by 3
Now Jen's number is 24

20

24

Jen thinks of a number.

She multiplies her number by 3
Then she adds 2
Now Jen's number is 20

She adds 2
Then she multiplies her number by 3
Now Jen's number is 24

24

The patterns are made with identical rectangles and semi-circles.

Spot the difference.

The patterns are made with identical rectangles and semi-circles.

Pattern $A=50$

Pattern $\mathrm{B}=70$

The patterns are made with identical rectangles and semi-circles.

Pattern $A=50$

Pattern $B=70$

The patterns are made with identical rectangles and semi-circles.

Pattern $\mathrm{A}=\mathbf{5 0}$

$=20$

The patterns are made with identical rectangles and semi-circles.

Pattern $\mathrm{A}=\mathbf{5 0}$

The patterns are made with identical rectangles and semi-circles.

Pattern $\mathrm{A}=\mathbf{5 0}$

The towers are made with identical squares and identical rectangles.

Spot the difference.

The towers are made with identical squares and identical rectangles.

Calculate the height of a rectangle and the height of and a square.

The towers are made with identical squares and identical rectangles.

Calculate the height of a rectangle and the height of and a square.

The towers are made with identical squares and identical rectangles.

Calculate the height of a rectangle and the height of and a square.

The towers are made with identical squares and identical rectangles.

Calculate the height of a rectangle and the height of and a square.

$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show. They pay \square for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show. They pay \square for their tickets.
$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show. They pay \square for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show.
They pay \square for their tickets.
What is the cost of a child ticket to the show?
Child ticket = \square
$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show.
They pay \square for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 44$ for their tickets.
What is the cost of a child ticket to the show?
Child ticket =

Give a possible answer.
Clue: Adult tickets are more expensive than child tickets.
$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show. They pay $£ 58$ for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 44$ for their tickets.
What is the cost of a child ticket to the show?
Child ticket = \square
$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 58$ for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 44$ for their tickets.
What is the cost of a child ticket to the show?
Child ticket =

$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 58$ for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 44$ for their tickets.
What is the cost of a child ticket to the show? Child ticket =
(A) $=£ 14$

$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 58$ for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 44$ for their tickets.
What is the cost of a child ticket to the show?
Child ticket $=$
(A) $=£ 14$

$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 58$ for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show.
They pay $£ 44$ for their tickets.
What is the cost of a child ticket to the show?
Child ticket $=£ 8$

$$
\begin{aligned}
& A=£ 14 \\
& C=£ 8
\end{aligned}
$$

The towers are made with identical squares and identical rectangles.

Calculate the height of a rectangle the height of and a square.

The questions are similar because...

$\mathbf{3}$ adults and $\mathbf{2}$ children go to the show. They pay \square for their tickets.
$\mathbf{2}$ adults and $\mathbf{2}$ children go to the show. They pay \square for their tickets.

What is the cost of a child ticket to the show?
Child ticket $=\square$

At the bike shop, it costs $\mathbf{£ 6}$ to hire a bike plus $£ \mathbf{4}$ for each hour that it is used. How much does it cost to hire a bike for 5 hours?

At the bike shop, it costs $\mathbf{£ 6}$ to hire a bike plus $£ \mathbf{4}$ for each hour that it is used.

How much does it cost to hire a bike for 5 hours?

Explain the Mistake:
$£ 6 \times 5+£ 4=£ 34$

At the bike shop, it costs $\mathbf{£ 6}$ to hire a bike plus $£ \mathbf{4}$ for each hour that it is used.

How much does it cost to hire a bike for 5 hours?

Correct Answer:
$£ 4 \times 5 \mathbf{£} \mathbf{f}=£ 26$

Tickets at the cinema cost $\mathbf{£ 9}$ plus there is a $\mathbf{£ 3}$ booking fee.

How much does it cost to buy 4 cinema tickets?

Tickets at the cinema cost $\mathbf{£ 9}$ plus there is a $\mathbf{£ 3}$ booking fee.

How much does it cost to buy 4 cinema tickets?

Explain the Mistakes:

$$
£ 9 \times 3+£ 3=£ 30
$$

Tickets at the cinema cost $\mathbf{£ 9}$ plus there is a $\mathbf{£ 3}$ booking fee.

How much does it cost to buy 4 cinema tickets?

Correct Answer:
$£ 9 \times \mathbf{4} \mathbf{+} \mathbf{£} \mathbf{3}=\mathbf{£} \mathbf{3 9}$

Make Your Own Pizza £3.50 for the pizza base 75p per topping

Tom makes a pizza using 3 toppings. How much does it cost?

Make Your Own Pizza £3.50 for the pizza base 75p per topping

Tom makes a pizza using 3 toppings. How much does it cost?

Make Your Own Pizza £3.50 for the pizza base 75p per topping

Tom makes a pizza using 3 toppings. How much does it cost?

£3.50 75p \quad 75p \quad 75p

$£ 5.75$

Make Your Own Pizza $£ 3.50$ for the pizza base 75p per topping

Amy has £7.
How many toppings can she afford?

Make Your Own Pizza £3.50 for the pizza base 75p per topping

Amy has £7.
How many toppings can she afford?

£7

| $£ 3.50$ | $75 p$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Make Your Own Pizza $\mathbf{£ 3 . 5 0}$ for the pizza base 75p per topping

Amy has £7.
How many toppings can she afford?

£7

| $£ 3.50$ | $75 p$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Amy can afford 4 toppings.

Gym Prices: £8 per session for non-members £5 per session for members Membership: £20 per year

You save money by being a member of the gym if...

There is a $\mathbf{2 k m}$ relay race at the park.

How far does each person run?

1
What information must be given?

There is a $\mathbf{2 k m}$ relay race at the park. There are \square runners on a team. How far does each person run?

There is a $\mathbf{2 k m}$ relay race at the park. There are 5 runners on a team. How far does each person run?

There is a $\mathbf{2 k m}$ relay race at the park. There are 5 runners on a team. How far does each person run?

$2 k m \times 1000=2000 m$

There is a $\mathbf{2 k m}$ relay race at the park. There are 5 runners on a team. How far does each person run?
$2 \mathrm{~km} \times 1000=2000 \mathrm{~m}$
$2000 \mathrm{~m} \div 5=400 \mathrm{~m}$

A bakery has an order for \square cakes.

The bakery has $\mathbf{3 k g}$ of sugar.

How much sugar does the bakery have left?

What information must be given?

A bakery has an order for \square cakes.
There is $\mathbf{3 5 0} \mathbf{g}$ of sugar in each cake.
The bakery has $\mathbf{3 k g}$ of sugar.

How much sugar does the bakery have left?

A bakery has an order for 6 cakes.
There is $\mathbf{3 5 0} \mathbf{g}$ of sugar in each cake.
The bakery has $\mathbf{3 k g}$ of sugar.

How much sugar does the bakery have left?

A bakery has an order for 6 cakes.
There is $\mathbf{3 5 0} \mathbf{g}$ of sugar in each cake.
The bakery has $\mathbf{3 k g}$ of sugar.

How much sugar does the bakery have left?

$350 \mathrm{~g} \times 6=2100 \mathrm{~g}$

A bakery has an order for 6 cakes.
There is $\mathbf{3 5 0} \mathbf{g}$ of sugar in each cake.
The bakery has $\mathbf{3 k g}$ of sugar.

How much sugar does the bakery have left?

$350 \mathrm{~g} \times 6=2100 \mathrm{~g}$
$3000 \mathrm{~g}-2100 \mathrm{~g}=\underline{900} \mathrm{~g}$

Multi-Step Measures

Maria is baking cakes.
Maria has $\mathbf{1 . 2 \mathrm { kg }}$ of butter.

What could the information be?
What could the question be?

Multi-Step Measures

Maria is baking cakes.
Maria has 1.2 kg of butter.
$\mathbf{1 8 0 g}$ of butter is needed to make a cake.

What could the question be?

Maria is baking cakes.
Maria has 1.2 kg of butter.
$\mathbf{1 8 0} \mathrm{g}$ of butter is needed to make a cake. How many cakes can she make?

Maria is baking cakes.
Maria has 1.2 kg of butter.
$\mathbf{1 8 0} \mathrm{g}$ of butter is needed to make a cake. How many cakes can she make?

$$
1.2 \mathrm{~kg} \times 1000=1200 \mathrm{~g}
$$

Maria is baking cakes.
Maria has 1.2 kg of butter.
$\mathbf{1 8 0 g}$ of butter is needed to make a cake. How many cakes can she make?

$$
1.2 \mathrm{~kg} \times 1000=1200 \mathrm{~g}
$$

$$
\begin{aligned}
& 180 \mathrm{~g} \times 5=900 \mathrm{~g} \\
& 180 \mathrm{~g} \times 6=1080 \mathrm{~g} \\
& 180 \mathrm{~g} \times 7=1260 \mathrm{~g}
\end{aligned}
$$

Maria is baking cakes.
Maria has 1.2 kg of butter.
$\mathbf{1 8 0} \mathrm{g}$ of butter is needed to make a cake. How many cakes can she make?

$$
1.2 \mathrm{~kg} \times 1000=1200 \mathrm{~g}
$$

Maria can make 6 cakes

$$
\begin{aligned}
& 180 \mathrm{~g} \times 5=900 \mathrm{~g} \\
& 180 \mathrm{~g} \times 6=1080 \mathrm{~g} \\
& 180 \mathrm{~g} \times 7=1260 \mathrm{~g}
\end{aligned}
$$

Stan wakes up at 7:35am.
Mike wakes up \square Stan. At what time does Mike wake up?

Stan wakes up at 7:35am.
Mike wakes up \square Stan.
At what time does Mike wake up?

The answer is between 8:00am and 8:30am. What information could be in the box?

Stan wakes up at 7:35am.
Mike wakes up $\frac{3}{4}$ hour after Stan. At what time does Mike wake up?

Stan wakes up at 7:35am.
Mike wakes up $\frac{3}{4}$ hour after Stan.
At what time does Mike wake up?

Explain the Mistake:

45 minutes after 7:35am is 7:80am

Stan wakes up at 7:35am.
Mike wakes up $\frac{3}{4}$ hour after Stan.
At what time does Mike wake up?

Answer:

Kim ran a $\mathbf{1 0 k m}$ race in $\mathbf{5 1}$ minutes $\mathbf{1 5}$ seconds Becky finished \square before Kim.
How long did it take Becky to run the race?

Kim ran a $\mathbf{1 0 k m}$ race in $\mathbf{5 1}$ minutes $\mathbf{1 5}$ seconds Becky finished \square before Kim. How long did it take Becky to run the race?

The answer is between 49 minutes and 50 minutes. What information could be in the box?

Kim ran a $\mathbf{1 0 k m}$ race in $\mathbf{5 1}$ minutes $\mathbf{1 5}$ seconds Becky finished 1 minute 40 seconds before Kim. How long did it take Becky to run the race?

Kim ran a $\mathbf{1 0 k m}$ race in $\mathbf{5 1}$ minutes $\mathbf{1 5}$ seconds Becky finished 1 minute 40 seconds before Kim. How long did it take Becky to run the race?

Explain the Mistake:
52 minutes 55 seconds

Kim ran a $\mathbf{1 0 k m}$ race in $\mathbf{5 1}$ minutes $\mathbf{1 5}$ seconds Becky finished 1 minute 40 seconds before Kim. How long did it take Becky to run the race?

Answer:

Kim ran a 10 km race in $\mathbf{5 1}$ minutes 15 seconds Becky finished 1 minute 40 seconds before Kim. How long did it take Becky to run the race?

Answer:

Here are two train timetables:

Sheffield	$7: 13$	$8: 13$	$9: 01$		York	$7: 34$	$9: 15$	$10: 56$		
Doncaster	$7: 42$	$8: 40$	$9: 30$	Malton	$7: 59$	$9: 40$	$11: 21$			
York	$8: 09$	$9: 07$	$9: 57$	Seamer	$8: 16$	$9: 57$	$11: 38$			
Durham	$8: 57$	$9: 54$	$10: 46$	Eastfield	$8: 22$	$10: 03$	$12: 14$			
Newcastle	$9: 18$	$10: 15$	$11: 08$							Kam arrives in Doncaster station at 8:43.
:---										
How long will it take him to arrive in Newcastle?										

Here are two train timetables:

Sheffield	$7: 13$	$8: 13$	$9: 01$		York	$7: 34$	$9: 15$	$10: 56$
Doncaster	$7: 42$	$8: 40$	$9: 30$		Malton	$7: 59$	$9: 40$	$11: 21$
York	$8: 09$	$9: 07$	$9: 57$		Seamer	$8: 16$	$9: 57$	$11: 38$
Durham	$8: 57$	$9: 54$	$10: 46$		Eastfield	$8: 22$	$10: 03$	$12: 14$
Newcastle	$9: 18$	$10: 15$	$11: 08$					

Kam arrives in Doncaster station at 8:43. How long will it take him to arrive in Newcastle?

Here are two train timetables:

Sheffield	$7: 13$	$8: 13$	$9: 01$	York	$7: 34$	$9: 15$	$10: 56$		
Doncaster	$7: 42$	$8: 40$	$9: 30$	Malton	$7: 59$	$9: 40$	$11: 21$		
York	$8: 09$	$9: 07$	$9: 57$	Seamer	$8: 16$	$9: 57$	$11: 38$		
Durham	$8: 57$	$9: 54$	$10: 46$	Eastfield	$8: 22$	$10: 03$	$12: 14$		
Newcastle	$9: 18$	$10: 15$	$11: 08$						Kam arrives in Doncaster station at 8:43.
:---									
How long will it take him to arrive in Newcastle? 25 mins									

Here are two train timetables:

Sheffield	$7: 13$	$8: 13$	$9: 01$	York	$7: 34$	$9: 15$	$10: 56$		
Doncaster	$7: 42$	$8: 40$	$9: 30$	Malton	$7: 59$	$9: 40$	$11: 21$		
York	$8: 09$	$9: 07$	$9: 57$	Seamer	$8: 16$	$9: 57$	$11: 38$		
Durham	$8: 57$	$9: 54$	$10: 46$	Eastfield	$8: 22$	$10: 03$	$12: 14$		
Newcastle	$9: 18$	$10: 15$	$11: 08$						Kate gets the 8:13 train from Sheffield. She is travelling
:---									
to Seamer. How long is Kate's journey?									

Here are two train timetables:

Sheffield	$7: 13$	$8: 13$	$9: 01$		York	$7: 34$	$9: 15$	$10: 56$
Doncaster	$7: 42$	$8: 40$	$9: 30$		Malton	$7: 59$	$9: 40$	$11: 21$
York	$8: 09$	$9: 07$	$9: 57$		Seamer	$8: 16$	$9: 57$	$11: 38$
Durham	$8: 57$	$9: 54$	$10: 46$		Eastfield	$8: 22$	$10: 03$	$12: 14$
Newcastle	$9: 18$	$10: 15$	$11: 08$					

Kate gets the 8:13 train from Sheffield. She is travelling to Seamer. How long is Kate's journey?

Here are two train timetables:

Sheffield	$7: 13$	$8: 13$	$9: 01$		York	$7: 34$	$9: 15$	$10: 56$
Doncaster	$7: 42$	$8: 40$	$9: 30$		Malton	$7: 59$	$9: 40$	$11: 21$
York	$8: 09$	$9: 07$	$9: 57$		Seamer	$8: 16$	$9: 57$	$11: 38$
Durham	$8: 57$	$9: 54$	$10: 46$		Eastfield	$8: 22$	$10: 03$	$12: 14$
Newcastle	$9: 18$	$10: 15$	$11: 08$					

Kate gets the 8:13 train from Sheffield. She is travelling to Seamer. How long is Kate's journey?

These clocks show the time in different cities at UK time 14:15

These clocks show the time in different cities at UK time 14:15

London

When the time in Athens is 20:45, what is the time in New York?

These clocks show the time in different cities at UK time 14:15

London

When the time in Athens is 20:45, what is the time in New York?

Converting Units of Time

The blue line represents 1 day

The red line represents

Converting Units of Time

The blue line represents 1 day

The red line represents $\mathbf{2 0}$ hours

The blue line represents 1 day

The red line represents $\mathbf{2 0}$ hours

There are 24 hours in a day.
1 day >24 hours

The green line represents 180 minutes

The purple line represents

The green line represents 180 minutes

The purple line represents $\mathbf{3}$ hours

The green line represents 180 minutes

The purple line represents $\mathbf{3}$ hours

There are 60 minutes in an hour.
180 minutes $=3$ hours

The pink line represents $\mathbf{2}$ months

The orange line represents

The pink line represents 2 months

The orange line represents 9 weeks

The pink line represents $\mathbf{2}$ months

The orange line represents 9 weeks
There are 28-31 days in a month. There are 7 days in a week.

2 months < 9 weeks

Converting Units of Time

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?

What was the time and date $\mathbf{5 2}$ hours ago?

Converting Units of Time

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?
later

What was the time and date $\mathbf{5 2}$ hours ago?

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?

$60 \mathrm{mins}=1$ hour

later

What was the time and date $\mathbf{5 2}$ hours ago?

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?
later

180 mins $=1$ hour
200 mins $=3$ hours
2 hours 20 mins

What was the time and date $\mathbf{5 2}$ hours ago?

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?

What was the time and date $\mathbf{5 2}$ hours ago?

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?

$60 \mathrm{mins}=1$ hour $180 \mathrm{mins}=3$ hours
5:00pm $200 \mathrm{mins}=3$ hours 20 mins

What was the time and date $\mathbf{5 2}$ hours ago?

earlier

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?

	60 mins $=1$ hour	tater
	180 mins $=3$ hours 200 mins $=3$ hours 20 mins	

What was the time and date $\mathbf{5 2}$ hours ago?

$$
24 \text { hours = } 1 \text { day }
$$

earlier

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?
$60 \mathrm{mins}=1$ hour
later $\quad 180 \mathrm{mins}=3$ hours
$200 \mathrm{mins}=3$ hours 20 mins

What was the time and date $\mathbf{5 2}$ hours ago?

14 ${ }^{\text {th }}$ July, 1:40pm

What will the time be in $\mathbf{2 0 0}$ minutes?

| | |
| :--- | :--- | :--- |
| later | 60 mins $=1$ hour |
| 180 mins $=3$ hours | |
| 200 mins $=3$ hours 20 mins | |$\quad 5: 00$ pm

What was the time and date $\mathbf{5 2}$ hours ago?

ఒ earlier

24 hours = 1 day
48 hours $=2$ days
52 hours $=2$ days 4 hours
$12^{\text {th }}$ July,
9:40am

Days:

January:
February:
March:
April:
May:
June:
July:
August:
September:
October:
November:
December:

Days:

January:
February: 28-29
March:
April: 30
May:
June: 30
July:
August:
September: 30
October:
November: 30
December:

Days:

January: 31
February: 28-29
March: 31
April: 30
May: 31
June: 30
July: 31
August: 31
September: 30
October: 31
November: 30
December: 31

What will the date be $\mathbf{1}$ week after $25^{\text {th }}$ October?

Days:

January: 31
February: 28-29
March: 31
April: 30
May: 31
June: $\mathbf{3 0}$
July: 31
August: 31
September: $\mathbf{3 0}$
October: 31
November: 30
December: 31

What will the date be 1 week after $25^{\text {th }}$ October?

6 days later is the last day in October

Days:

January: 31
February: 28-29
March: 31
April: 30
May: 31
June: $\mathbf{3 0}$
July: 31
August: 31
September: $\mathbf{3 0}$
October: 31
November: 30
December: 31

What will the date be 1 week after $25^{\text {th }}$ October?
6 days later is the last day in
October
Answer: $1^{\text {st }}$ November

Days:

January: 31
February: 28-29
March: 31
April: 30
May: 31
June: $\mathbf{3 0}$
July: 31
August: 31
September: $\mathbf{3 0}$
October: 31
November: 30
December: 31

What will the date be 1 week after $25^{\text {th }}$ October?

6 days later is the last day in
October
Answer: $1^{\text {st }}$ November

What was the date 1 week before $2^{\text {nd }}$ October?

2 days earlier was the last day in September

Days:

January: 31
February: 28-29
March: 31
April: 30
May: 31
June: $\mathbf{3 0}$
July: 31
August: 31
September: $\mathbf{3 0}$
October: 31
November: 30
December: 31
What will the date be 1 week after $25^{\text {th }}$ October?
6 days later is the last day in
October
Answer: $1^{\text {st }}$ November

Days:

January: 31
February: 28-29
March: 31
April: 30
May: 31
June: 30
July: 31
August: 31
September: 30
October: 31
November: 30
December: 31

Area: $7 \mathrm{~cm} \times 7 \mathrm{~cm}=$ Perimeter: $7 \mathrm{~cm} \times 4=$

Area: $7 \mathrm{~cm} \times 7 \mathrm{~cm}=49 \mathrm{~cm}^{2}$

Perimeter: $\mathbf{7 c m} \times 4=\mathbf{2 8 c m}$

The equilateral triangle and the square have the same $\quad \begin{aligned} & \text { What could the } \\ & \text { information be? }\end{aligned}$

12 cm

What could the question be?

What is the \square

Area and Perimeter

The equilateral triangle and the square have the same perimeter.

12 cm

What could the question be?

What is the

The equilateral triangle and the square have the same perimeter.

12 cm
What is the area of the square?

The equilateral triangle and the square have the same perimeter.

Perimeter $=36 \mathrm{~cm}$

12 cm
What is the area of the square?

The equilateral triangle and the square have the same perimeter.

Perimeter $=36 \mathrm{~cm}$

12 cm

What is the area of the square?

The equilateral triangle and the square have the same perimeter.

Perimeter $=36 \mathrm{~cm}$

12 cm

Area $=81 \mathrm{~cm}^{2}$

What is the area of the square?

The length of the rectangle is double its width.

The length of the rectangle is double its width.
The area of the rectangle is $\quad \mathbf{c m}^{\mathbf{2}}$

Give a possible area

What is the perimeter of the rectangle?

The length of the rectangle is double its width.
The area of the rectangle is $\mathbf{7 2} \mathbf{c m}^{\mathbf{2}}$

What is the perimeter of the rectangle?

The length of the rectangle is double its width.
The area of the rectangle is $\mathbf{7 2} \mathbf{c m}^{\mathbf{2}}$

$6 \mathrm{~cm} \times 12 \mathrm{~cm}=72 \mathrm{~cm}^{2}$

What is the perimeter of the rectangle?

The length of the rectangle is double its width.
The area of the rectangle is $\mathbf{7 2} \mathbf{c m}^{\mathbf{2}}$

What is the perimeter of the rectangle?

Volume

The cuboid is made using 30 cubes.

What are the dimensions of the cuboid?

Volume

The cuboid is made using 30 cubes.

What are the dimensions of the cuboid?

Volume

The cuboid is made using 30 cubes.

What are the dimensions of the cuboid?

dimensions

Volume

Build 2

Cuboid volume: $56 \mathrm{~cm}^{3}$

What could the question be?

Cuboid volume: $56 \mathrm{~cm}^{3}$

What is the area of the yellow rectangular face?

Cuboid volume: $56 \mathrm{~cm}^{3}$

What is the area of the yellow rectangular face?

Cuboid volume: $56 \mathrm{~cm}^{3}$

$2 \mathrm{~cm} \times 4 \mathrm{~cm} \times 7 \mathrm{~cm}$
$=56 \mathrm{~cm}^{3}$

What is the area of the yellow rectangular face?

The volume of the cuboid is $\mathbf{2 4 0} \mathbf{c m}^{\mathbf{3}}$

What could the dimensions be?

\times

$=240 \mathrm{~cm}^{3}$

The volume of the cuboid is $\mathbf{2 4 0} \mathbf{c m}^{\mathbf{3}}$ What could the dimensions be?

$=240 \mathrm{~cm}^{3}$

The volume of the cuboid is $\mathbf{2 4 0} \mathbf{c m}^{\mathbf{3}}$

What could the dimensions be?

$=240 \mathrm{~cm}^{3}$

The volume of the cuboid is $\mathbf{2 4 0} \mathbf{c m}^{\mathbf{3}}$ What could the dimensions be?

$10 \mathrm{~cm} \times 8 \mathrm{~cm} \times 3 \mathrm{~cm}$
$=240 \mathrm{~cm}^{3}$

Angle and Turn

When the spinner turns
it will point at the number

Angle and Turn

Build 1

When the spinner turns $\mathbf{2 7} \mathbf{0}^{\circ}$ clockwise, it will point at the number

Angle and Turn

Build 1

When the spinner turns $\mathbf{2 7} \mathbf{0}^{\circ}$ clockwise, it will point at the number 9

Angle and Turn

When the spinner turns
it will point at the number

Angle and Turn

When the spinner turns
it will point at the number 6

Angle and Turn

When the spinner turns $9 \mathbf{0}^{\circ}$ anticlockwise, it will point at the number 6

Angle and Turn

When the spinner turns
it will point at the number

Angle and Turn

When the spinner turns
it will point at the number 12

Angle and Turn

When the spinner turns 540°, it will point at the number 12

Angle and Turn

it will point at the number 12

Angle and Turn

What's the same?
What's different?

Angle A is larger/smaller than angle B .
Explain.

Angle and Turn

Build 2

$180^{\circ}-\left(90^{\circ}+36^{\circ}\right)$
$=54^{\circ}$
$A=54^{\circ}$

Angle and Turn

Build 2

$180^{\circ}-\left(90^{\circ}+36^{\circ}\right)$
$=54^{\circ}$
$180^{\circ}-\left(90^{\circ}+31^{\circ}\right)$
$=59^{\circ}$
$A=54^{\circ}$

Calculate angle C .

Estimate the size of angle C.
To calculate angle C, I need to know...

Calculate angle C .

Estimate the size of angle C.
To calculate angle C, I need to know...

Angle and Turn

This is an isosceles triangle.

Calculate angle C .

Angle and Turn

This is an isosceles triangle.

$$
\left(180^{\circ}-46^{\circ}\right) \div 2=67^{\circ}
$$

Calculate angle C .

This is an isosceles triangle.

$$
\begin{aligned}
& \left(180^{\circ}-46^{\circ}\right) \div 2=67^{\circ} \\
& \left(180^{\circ}-67^{\circ}\right)=113^{\circ} \\
& C=113^{\circ}
\end{aligned}
$$

Calculate angle C .

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

0
 18

422

4
16

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

4
16

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

4
16

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

Derive Coordinates

Each red dot is the midpoint between the blue dots. Calculate the midpoints:

Derive Coordinates

Which coordinates could be inside the square?

Derive Coordinates

Which coordinates could be inside the square?

Which coordinates could be inside the square?

Which coordinates could be inside the square?

Derive Coordinates

Which coordinates could be on the blue line?

Derive Coordinates

Which coordinates could be on the blue line?

Derive Coordinates

Which coordinates could be on the blue line?

Derive Coordinates

What is the midpoint of the line?

Derive Coordinates

What is the midpoint of the line?

Derive Coordinates
Build 3
What is the midpoint of the line?

Derive Coordinates
Build 3
What is the midpoint of the line?

Derive Coordinates

What is the midpoint of the rectangle?

Derive Coordinates

What is the midpoint of the rectangle?

Derive Coordinates

What is the midpoint of the rectangle?

Interpreting Graphs

Which of the graphs could show the number of people who attended a Zoo in one week?

Interpreting Graphs

Which of the graphs could show the number of people who attended a Zoo in one week?

Has 7 days, bar graph shows total visitors for each day

Interpreting Graphs

Which of the graphs could show the number of people who attended a Zoo in one week?

Has 7 days, bar graph shows total visitors for each day

Only 5 sections, pie chart not as easy to read the value of each section

Interpreting Graphs

Which of the graphs could show the speed of a runner in a 5 km race?

Interpreting Graphs

Which of the graphs could show the speed of a runner in a 5 km race?

Speed constantly changes so not shown in bar graph

Interpreting Graphs

Which of the graphs could show the speed of a runner in a 5 km race?

Speed constantly changes so not shown in bar graph

Interpreting Graphs

Which of the graphs could show the speed of a runner in a 5 km race?

Speed constantly changes so not shown in bar graph

Interpreting Graphs

Which of the graphs could show the way children travel to school?

Which of the graphs could show the way children travel to school?

Either.

Pie chart makes the comparison between sections clear. Easier to read group values from bar graph.

Interpreting Graphs

Children in KS2

Interpreting Graphs

Build 2

Children in KS2

= boys
$=$ girls

To answer, read 1 bar

What could the question be?

Interpreting Graphs

Children in KS2

$$
\begin{aligned}
& =\text { boys } \\
& =\text { girls }
\end{aligned}
$$

How many boys in Year 5?

To answer, read 1 bar

Interpreting Graphs
Children in KS2

$\square=$ boys
$\square=$ girls

How many boys in Year 5?

29 boys
To answer, read 1 bar

Interpreting Graphs

Build 2

Children in KS2

= boys
$=$ girls

Interpreting Graphs

Children in KS2

$$
\begin{aligned}
& =\text { boys } \\
& =\text { girls }
\end{aligned}
$$

How many children in Year 3?

To answer, add 2 bars

Interpreting Graphs
Children in KS2

$\square=$ boys
$\square=$ girls

How many children in Year 3?

To answer, add 2 bars
$30+23=$ 53 children

Interpreting Graphs

Build 2

Children in KS2

= boys
$=$ girls

To answer, add 4 bars

Interpreting Graphs

Children in KS2

$$
\begin{aligned}
& =\text { boys } \\
& =\text { girls }
\end{aligned}
$$

How many girls in KS2?

To answer, add 4 bars

Interpreting Graphs
Children in KS2

$\square=$ boys
$\square=$ girls

How many girls in KS2?

To answer, add 4 bars

$$
\begin{aligned}
& 30+25+19+24 \\
& =98 \text { girls }
\end{aligned}
$$

Interpreting Graphs

Build 2

Children in KS2

$=$ boys
$=$ girls

To answer, calculate the difference between 2 bars

What could the question be?

Interpreting Graphs

Build 2

Children in KS2

$\square=$ boys
= girls

How many more boys in Y5 than Y4?
To answer, calculate the difference between 2 bars

Interpreting Graphs
Children in KS2

How many more boys in Y5 than Y4?
To answer, calculate the difference between 2 bars
$29-20=$
9 more

Interpreting Graphs

Temperature

Interpreting Graphs

Temperature

To answer, take 1 reading

Interpreting Graphs

Temperature

What was the temperature at 9:30?

To answer, take 1 reading

Interpreting Graphs

Temperature

What was the temperature at 9:30?

To answer, take 1 reading
$8.5^{\circ} \mathrm{C}$

Interpreting Graphs

Temperature

To answer, calculate the difference between 2 points

What could the question be?

Temperature

For how long was the temperature above $10^{\circ} \mathrm{c}$?
To answer, calculate the difference between 2 points

Temperature

For how long was the temperature above $10^{\circ} \mathrm{c}$?
To answer, calculate the difference between 2 points

Interpreting Graphs

Distance Cycled

Interpreting Graphs

Here, the runner is moving

Distance Cycled

Here, the cyclist is not moving

Explain

Interpreting Graphs

Distance Cycled

The cyclists fastest speed is here

Explain

For each example, can the mean be calculated? Why would the mean be calculated?

The mean number of days in a week.
The mean number of baskets scored by a netball player per match.

The mean price of a mango in the supermarket.
The mean happiness you feel each morning.
The mean height of an adult giraffe.

Which Answer?

Here are the shoe sizes for five children: 3, 4, 3, 7, 3

The mean shoe size is size 3

The mean shoe size is size 4

Which Answer?

Here are the shoe sizes for five children:
3, 4, 3, 7, 3

The mean shoe size is size 3

The mean shoe size is size 4

Shoe sizes

Which Answer?

Here are the shoe sizes for five children:
$3,4,3,7,3$
x
The mean shoe size is size 3

The mean shoe size is size 4

Shoe sizes

Which Answer?

Three numbers have a mean of 12. What could the numbers be?

9,11 and 16

6, 2 and 4

Which Answer?

Three numbers have a mean of 12. What could the numbers be?

9,11 and 16

6, 2 and 4

Which Answer?

Three numbers have a mean of 12. What could the numbers be?

9,11 and 16

6, 2 and 4
x

The rugby team Layton Warriors played 3 matches.

Their mean number of points per match was \qquad
Match 1: \square points
Match 2: \square points
Match 3: \square points

The rugby team Layton Warriors played 3 matches.

Their mean number of points per match was
Match 1: \square points
Match 2: \square points
Match 3: \square points
Explain why this is not the largest or smallest of the four missing numbers.

The rugby team Layton Warriors played 3 matches.

Their mean number of points per match was 20
Match 1: 21 points
Match 2: 26 points
Match 3: \square points

The rugby team Layton Warriors played 3 matches.

Their mean number of points per match was 20
Match 1: 21 points
Match 2: 26 points
Match 3: 13 points

The rugby team Layton Warriors played 3 matches. In total, they scored 60 points.
Their mean number of points per match was 20
Match 1: $\mathbf{2 1}$ points
Match 2: 26 points
Match 3: 13 points

The rugby team Dutton Lions played 4 matches. In total, they scored 60 points.

Their mean number of points per match was \qquad
Match 1: \square points
Match 2: \square points
Match 3: \square points
Match 4: \square points

The rugby team Dutton Lions played 4 matches. In total, they scored 60 points.

Their mean number of points per match was Match 1: \square points
Match 2: \square points
Match 3: \square points
Can the mean be calculated?

Match 4: \square points

The rugby team Dutton Lions played 4 matches. In total, they scored 60 points.
Their mean number of points per match was 15
Match 1: \square points
Match 2: \square points
Match 3: \square points
Match 4: \square points

The rugby team Dutton Lions played 4 matches. In total, they scored 60 points.
Their mean number of points per match was 15 Match 1: 19 points
Match 2: 10 points
Match 3: \square points
Match 4: \square points \longrightarrow Give possible values.

The rugby team Dutton Lions played 4 matches. In total, they scored 60 points.
Their mean number of points per match was 15
Match 1: 19 points
Match 2: 10 points
Match 3: 14 points
Match 4: 17 points

