I know... so...

$4+4=8$
so $5+4=\square$

		0		0
	0	0	0	0

$5+5=10$
so $5+3=\square$

$3+3=6$
so $3+\square=5$

\oplus	0	0	\oplus	\circ
\otimes	0	0	0	0

$5+5=10$
so $6+5=\square$

(1)	+	(1)	-	장
-	-	-	-	-
4+4=8				
so $3+4=$				

\cdot	0	0		
0	0	0		

$3+3=6$ so $4+2=\square$

I know... so...

$7+7=14$
so $8+7=\square$

(2)	(2)	(1)	(2)	(1)	(2)	중	앙		
©	-	-	-	\%	0	\%	\%		

$\begin{aligned} 8+8 & =16 \\ \text { so } 9+8 & =\square\end{aligned}$

$6+6=12$
so $7+5=\square$

Different Ways

\section*{$7+5=\square$

$7+5$ is the same as:

$$
\begin{aligned}
& 5+5+\square \\
& 7+3+\square \\
& 6+\square
\end{aligned}
$$

Different Ways

$$
9+8=\square \begin{array}{lll}
0,0 & 0 \\
000
\end{array}
$$

$9+8$ is the same as:
$10+10$ take away \square
Double \square add 1
Double \square take away 1
Other:

Finish the Pictures

$$
\begin{aligned}
& 7+5=\square \xrightarrow{00 \cdot \square} \square \square \square \\
& \hline 7 \\
& \hline 10
\end{aligned}
$$

Change the Order

Which numbers do you add first?
$9+6+4=\square$

$$
7+6+3=
$$

\square

Add $\square+\square$ first

$$
4+8+2+6=
$$

$$
8+5+3=
$$

Add $\square+\square$ first

I know... so...
$36+20=56$
$36+23=\square$
$36+20=56$
$36+\square=55$
$43+30=73$
$43+\mathbf{3 0}=\mathbf{7 3}$
$43+29=\square$
$43+\square=75$

Change the Order

13-9 = \square

Take all 9 from the full 10 -frame

Take some from both 10-frames

True or False?
$13-5=8$
$\sqrt{ } \times$

$$
13-8=5
$$

13
$13=5+8$

$$
8
$$

$$
5-13=8 \quad 5=8+13
$$

$$
13-5=8
$$

Digit Cards Game

 Use each digit once. 12349Complete the number sentence. Do in different ways.
\square

Explain the Mistakes

Part-Complete Examples

Different Methods

Two ways of calculating 42×8 : What's the same? What's different?

Explore

There are 3 squares and 2 left over.

Rearrange the same number of matchsticks.
There are \square triangles and \square left over.

There are 2 ___ and 4 left over.

Explore

There are 6 triangles and 0 left over.

Rearrange the same number of matchsticks.
There are \square squares and \square left over.
There are 3

Different Methods

What's the best way to answer each question?
$80 \div 10$
$80 \div 1$
$80 \div 4$

```
80\div40
\(80 \div 5\)
```


Next Step

For each example, what's the remainder?

Which Answer?
$84 \div 3$
21
$3 \lcm{84}$
$3 \longdiv { 2 8 }$
24
$3 \longdiv { 8 ^ { 1 } 4 }$

