Task A Intro: 2-digit numbers

Teacher notes: the Task Build-Up (download from www.iseemaths.com/problem-solving-KS1) shows different ways to make 15 as a pre-curser to the Intro tasks.

Which answer?

	19			
nineteen	or			
	91	\quad	13	
---:	---:			
thirty-one	or			
31				

Task A: 2-digit numbers

Is it 21 ?
 Is it $12 ?$
 Is it trash? 血

Task A Questions: 2-digit numbers

How many? Put the answer in the blue box.

How many? Put the answer in the blue box.

Task A Extend: 2-digit numbers

Teacher notes: 4 possible answers: three 10p coins and four $1 p$ coins; two 10p coins and fourteen 1p coins; one 10p coin and twenty-four 1p coins; thirty-four 1p coins.

E X \quad Use $\mathbf{1 0 p}$ and $\mathbf{1 p}$ coins. $\underset{\mathrm{F}}{\mathrm{T}} \quad$ Make 34p $\underset{\substack{\mathrm{N} \\ \mathrm{D}}}{ } \quad$ Do in different ways.

E
X $\underset{\mathrm{E}}{\mathrm{T}} \quad$ Make 34p $\underset{\mathrm{N}}{\mathrm{N}} \quad \mathrm{Do}$ in different ways.


```
E Use 10p and 1p coins.
T Make 34p
N Do in different ways.
```


X Use 10 p and $\mathbf{1 p}$ coins.
T Make 34p
N Do in different ways.

Task E Intro: Bordering 10

Teacher notes: After the Intro task, show the Task Build-Up Part 1 (download from www.iseemaths.com/problem-solving-KS1) to show addition calculations that border 10.

Which are more than 10 ?
$9+3$

$$
8+3
$$

$7+4$
$5+4$
$8+2$
$6+3$

Which are more than $10 ?$
$9+3$

$$
8+3
$$

$7+4$
$5+4$
$8+2$
$6+3$

Which are more than $10 ?$
$9+3$

$$
8+3
$$

$7+4 \quad 8+5$
$5+4$
$8+2$
$6+3$

Which are more than $10 ?$
$9+3$

$$
8+3
$$

$$
7+4
$$

$5+4$
$8+2$
$6+3$

Task E: Bordering 10

Teacher notes: Before this task show the Task Build-Up Part 1 (download from www.iseemaths.com/problem-solving-KS1). After this task show the Task Build-Up Part 2.

Cut out. $8<\quad$ When you see \square^{\square} say the missing number.

Task E Questions: Bordering 10

Draw the dots. Fill the boxes.

For $9+4$, split 4 into \square and \square
For $8+3$, split 3 into \square and \square

$9+4=\square$
$8+3=\square$

O
N
For $7+5$, split 5 into \square and \square

$7+5=\square$

Draw the dots. Fill the boxes.

\otimes	\varnothing	\varnothing	\varnothing	\varnothing
\varnothing	\varnothing	\varnothing	\varnothing	

$$
9+4=\square
$$

For $7+5$, split 5 into \square and \square

\varnothing	$\boxed{0}$	0	0
0	0		

$7+5=\square$

For $9+5$, split 5 into \square and \square

\varnothing	0	0	0
\varnothing	0	0	0

$9+5=\square$

Task E Extend: Bordering 10

Teacher notes: Solutions can be modelled using 10-frames.
Six answers: $9+4=13 \quad 4+9=13 \quad 8+5=13 \quad 5+8=13 \quad 9+5=14 \quad 5+9=14$
\square

Task 2 Intro: Shapes for numbers

Teacher notes: use the Task Build-Up (download from www.iseemaths.com/problem-solvingKS 1) to introduce this activity is task 2, part 1. Then the children answer the questions below. This is the first part of task 2.

Task 2 Questions: Shapes for numbers

Teacher notes: the Task Build-Up (download from www.iseemaths.com/problem-solving-KS1) to introduce these questions is task 2, part 2. In these examples, questions are presented line-by-line. When viewing these examples, ask 'Which shape do you work out first?' The questions below are the 'green' challenge, and questions on the next page are the 'yellow' challenge.

Task 2 Questions: Shapes for numbers

$$
\begin{array}{ll}
O+\square=8 & \bigcirc= \\
O+\bigcirc=12 & \square=
\end{array}
$$

$$
\square+\square=7
$$

$$
\begin{aligned}
& \text { O} \\
& \text { T } \\
& \text { A } \\
& \text { S } \\
& \text { K }
\end{aligned}
$$

$$
\square+\square+\square=10 \quad \square=
$$

$$
\left.\begin{array}{l|l|}
\boxed{\square}+\nabla=15 & \boxed{\square}= \\
\square+\square \\
\square & \square=15
\end{array}\right)
$$

Task 2 Extension: Shapes for numbers

Teacher notes: the number at the end of each column/row is the sum for the shapes in that line. Note that the best starting point is the column/row with all the same shape. Answers for table 1:
Answers for table 2:

Task 3 Intro: Three numbers

Circle two dice that add to make 6

$$
\begin{array}{llll}
\square-0 & \boxed{\circ} & \boxed{\circ} & \boxed{\circ}
\end{array}
$$

Circle three dice that add to make 6

$$
\begin{array}{llll}
\bullet & \bullet & 0^{\bullet} & 0^{\bullet} \\
0^{\bullet} & \\
\hline
\end{array}
$$

Circle three dice that add to make 8

$$
\begin{array}{llll}
\bullet & \bullet & 0^{\bullet} & \left.\begin{array}{ll}
\bullet & 0 \\
0 & 0 \\
\hline
\end{array}\right]
\end{array}
$$

I think of 3 numbers. They are all different. They add to make 8.
\checkmark or \mathbf{x}

6 + 2

$$
4+3+1
$$

$$
4+2+2
$$

Task 3 Questions: Three numbers

Teacher notes: equipment can be used to access the tasks, for example putting counters on three whiteboards or putting red, blue and green cubes in 10-frames. The 'explain' prompt extends the green task; the 'extend' prompt extends the yellow task.

${ }_{i}{ }^{\circ}$ I think of $\mathbf{3}$ numbers.
$\underset{S}{A}$ They are all different. They add to make 12.

True or false: $\sqrt{ } \times$

7 and 3

6,3 and 1

X They add to make 14.
E Each number is less than 8.
D Find 3 possible answers.
I think of 3 numbers.
They are all different.
They add to make 12.

I think of 3 numbers.
They are all different.
They add to make 10.

E 1 think of 3 different numbers.

Answer 2:

Answer 3: \square

Task 4 Intro: Dice patterns

True or false?

Circle 3 lots of 5.
Circle 4 lots of 2.

Task 4 Activity: Dice patterns

Teacher notes: cut out and mix up the images and number sentences. Children match the images to the two corresponding number sentences. They fill in the missing numbers and draw the missing picture.

Task 4 Questions: Dice patterns

Teacher notes: for the main task, children fill in the gaps. For the extension task, recognise for example that $5+5+10$ is 4 lots of 5 as there are two lots of 5 in 10 .

Dot pattern	'lots of' sentence	\times sentence	
		2 lots of $\square=\square$	2
$\because 0$	$\square .0$	2	

Dot pattern	'lots of' sentence	\times sentence
	4 lots of $\boxed{2}=\square$	$\boxed{4} \times \boxed{2}=\square$

- How many lots of 5?

$$
\begin{aligned}
& \mathbf{4 + 1 + 4 + 1 + 4 + 1} \text { is } \square \text { lots of } 5 \text {. } \\
& \mathbf{5 + 5 + 1 0} \text { is } \square \text { lots of } 5 \text {. } \\
& 10+10+10 \text { is } \square \text { lots of } 5 .
\end{aligned}
$$

Task 4 Questions: Dice patterns

Teacher notes: for the main task, children fill in the gaps. For the extension task, recognise for example that $5+5+20$ is 6 lots of 5 as there are four lots of 5 in 20 .

Dot pattern	'lots of' sentence	\times sentence
	3 lots of $\square=$	$3 \times \square=$

Dot pattern	'lots of' sentence	\times sentence
	\square lots of $5=$ \square	$\square \times 5=$
Dot pattern	'lots of' sentence	x sentence
	lots of \square $=10$	$\square \times \square=10$

Dot pattern	'lots of' sentence	\times sentence
	\square lots of3 $=15$	

- How many lots of 5 ?

