Sum of the digits

The sum of the digits for a whole-number is 6 .
All the digits are different.
What is the largest that the number could be? What is the smallest that the number could be?
Example: the sum of the digits for 214 is $7(2+1+4=7)$

Decimals on a number line

0.19 is half-way between the numbers in the two blue boxes. What numbers could be in the blue boxes? Answer this question in two ways.

The café

A cup of tea and a biscuit costs £1.30. A cup of tea costs 60p more than a biscuit.

How much does a biscuit cost?
 How big is each section?

Sum and difference

The sum of two numbers is 9 .
The difference between these two numbers is 4 . What are the numbers?

Four numbers challenge

The sum of four whole numbers is 23.
The difference between the smallest and the largest number is 6 .

All four numbers are different.
What could the four numbers be?
Find all the possible answers to this question.

Missing digits addition

Fill in the missing digits in this calculation:
$\square 8 \square+3 \square 5=1052$

Write a missing digits addition question. Requirements:

- The calculation is a 3-digit number plus a 3-digit number.
- At least 3 of the digits are hidden. The sum is shown.
- Your question can be answered in either 2, 3 or 4 ways.

I N Example: $\square 8 \square+\square \square 3=524$
Possible answers: $181+363=524,281+263=524,381+163=524$

Missing digits subtraction

Fill in the missing digits in this calculation:

$$
6 \square 2-\square 3 \square=243
$$

Rounding money

Rounded to the nearest $£ 10$, Alex has $£ 250$. Rounded to the nearest $£ 100$, Jim has $£ 400$. Alex and Jim have an exact amount in £ pounds. What is the greatest possible difference between the amount of money that Alex and Jim have?

Rounding puzzles

Part 1: What is the largest whole number that, when rounded to the nearest 100, is 4000 ?

Part 2: What is the largest whole number that, when rounded to the nearest 500 , is 4000 ?

Number line challenge

Look at this number line:

What numbers could be in the red and blue boxes?
Challenge: think of two possible pairs of answers.

Remainder of one-half

Complete the calculation using digits $0 \rightarrow 9$. You can only use each digit once. Position the digits 1,2 and 8 as shown.

Level 1: I can find an answer
Level 2: I can find different answers Level 3: I know how many possible answers there are

'The number in the blue box is the same is the number

Part-finished number sentences 1

$10-8<\square-\square$	Fill the boxes, using each of these numbers once:
$20>\square \times 3$	$\mathbf{4 , 5 , 6 , 7 , 8}$
$\square+4=15-\square$	

Part-finished number sentences 2

$\square \times 3=18+\square$	Fill the boxes, using each of these numbers once:
$2<9-\square$	$3,6,7,8,9$
$\square \div 2<4$	
$2 \times 2 \times 2 \times 2<\square+8$	

Subtraction number sentences

$\mathrm{H}-25<35$
$80-\mathrm{H}<39$

H is a multiple of 6

Find all the possible values for H

$\boldsymbol{I}_{\mathrm{E}}^{\mathbf{-}} \mathrm{E}$ True or false? $\sqrt{\boldsymbol{x}}$

$60-25<35$	$80-39<39$
$25-60<35$	$80-41<39$
$62-25<35$	$80-42<39$

Find the factors

Which of the digits from 1 to 9 are factors of 532?

List the digits that you knew were/were not factors of 532 without having to do any calculations.

IS Tip 1:532 has 2 ones. That helps us to know whether
I U 2 and 5 are factors of 532 .
I P Tip 2: use a related multiplication fact. For example,
I O $6 \times 90=540$. Therefore, is 6 a factor of 532?
I Tip 3: for some digits it might be easiest to perform a division calculation.

List all the 2-digit factors of 288.

E Reasoning sentence stems:
I know that \square is a 2-digit factor of 288 so \square must also be a factor of factor of 288.
The first 2-digit number I tried was... because...
I know I have found all the possible answers because...

Multiplication missing digits

Number detective

The sum of the digits in a 2-digit number is 13 .
The number is a multiple of 4 .

What is the number?

I S Example:
IU 92 is a 2-digit number (the digits are 9 and 2)
I $\mathrm{P} \quad 92$ is a multiple of $4(23 \times 4=92)$
1 O The sum of the digits of 92 is $11(9+2=11)$
I Tip: start by listing the digits that add up to 13.
I- I

I X The sum of the digits of a number is 6 .
I T Each digit is different.
IN What is largest that the number can be?

Ticket prices

It costs $\mathbf{£ 1 4 . 1 0}$ for an adult and a child ticket to the zoo.
It costs $\mathbf{£ 2 3 . 5 0}$ for an adult and three child tickets to the zoo.
What is the cost for one child ticket at the zoo?

Change the perimeter

For this task you will need some small squares.
Make a rectangle with an area of 24 squares which has the largest possible perimeter.

Example:

Area of this shape $=21$ squares
Perimeter of this shape $=20$

Rectangle length

The length of the rectangle is double its width.
The area of the rectangle, rounded to the nearest $100 \mathrm{~cm}^{2}$, is $200 \mathrm{~cm}^{2}$.
The length and width of the rectangle are whole numbers (in cm).

not to \quad What is the smallest that the SCALE length of rectangle can be?

Compound shape

Right-angled triangle area

| | The area of an isosceles right-angled
 triangle is less than $150 \mathrm{~cm}^{2}$.
 What is the largest possible value for
 length B ?
 Length B is a whole number. |
| :--- | :--- | :--- |

Combined shapes

Combined weights

Ben and Sam weigh 90kg in total. Jack and Ben weigh 100kg in total. Sam and Jack weigh 80kg in total.
How heavy is Sam?

Sports ball weights

A golf ball and a tennis ball weigh 104 g in total.
A tennis ball and a cricket ball weigh 218 g in total.
A tennis ball, a golf ball and a cricket ball weigh 264 g in total.
How heavy is a cricket ball?

Going surfing

It costs $£ 7$ to hire a surfboard plus $£ \mathbf{£}$ per half-hour used.
Kate goes surfing for 3 hours. It costs her \square to hire the surfboard. Jack goes surfing for \square hours. It costs him $£ 34$ to hire the surfboard.

Dot pattern sequence

Picture 1： 4 dots	Picture 2： $\bullet \circ$ \bullet \bullet \bullet 0 7 dots	Picture 3： $\begin{aligned} & \circ \circ \circ \circ \circ \\ & \circ \\ & 10 \text { dots } \end{aligned}$	How many dots are there in： （a）Picture 8 （b）Picture 16

1 S	Picture 1：	Picture 2：	Picture 3：	Notice：There			
I U	\bigcirc	－－	－० ०－	are 4 dots in			
I P	\bigcirc	\bigcirc	\bigcirc	the first pattern．			
$1{ }^{\text {P }}$	\bigcirc	\bigcirc	$\bullet \bullet \circ$	Each time， 3			
10	4 dots	7 dots	10 dots	to make the			
R				next picture．			
1 T							
	Which sequence is the odd one out？						
E							
I X							
1 P		$4,8,12 \ldots 3$		3，6，9．．．			
1 L	4，7，10．						
I A							
1 ｜	Think of a reason why each sequence could be the odd						
I N	one out．						
L－ーーーーーーーーーーーーーーーーーーーーーーーーーーーー							
	Agree or disagree？						
1 E							
$1 \times$	Kara：＇Doubling the number of dots in the $8^{\text {th }}$ picture does not						
I T	give you th	ber of do	e $16^{\text {th }}$ picture．				
1 E	Jen：＇There are 10 dots in the 3rd picture，so there will be 50 dots						
1 N	in the $15^{\text {th }}$ picture．＇						
	Lena：＇There is a picture with 361 dots．＇						
	Lena．	picture with	dots．				

Number sequences

The first 3 terms of a sequence are positive whole numbers. The second negative number in the sequence will be -7 . Write the first 3 terms of the sequence.

Example: 9, 7, 5...
The second negative number in this sequence will be -3.

I E Circle the sequences that will include the number 0 :
I L 98, 91, 84... $725,700,675 \ldots \quad 580,540,500 \ldots$

My secret number

I have a secret number. I multiply my secret number by 3 and add 7. This makes a whole number in the 20s $(20 \rightarrow 29)$. What could my secret number be?
Find all the possible values for the secret number.

Driving to work

Lorna has a $\frac{3}{4}$ hour drive to work. She works every day from Monday to Friday, although she only works until lunchtime on Wednesday.

How long, in hours and minutes, does she spend driving to work each week?

I S Tip 1: Lorna does not spend $\frac{3}{4}$ hour driving each day. Why?
I U
I P Tip 2: Think about how the amount of driving Lorna does on I P Wednesday is the same/different to Lorna's other working days.

Tip 3: $\frac{3}{4}$ hour $=\square$ minutes
I T

Explain the mistakes:

Mistake 2:	Mistake 3:
$\underline{3} \times 10=\underline{30}$	45 minutes $\times 10$
$\overline{4} \times 10=\frac{4}{4}$	$=450$ minutes
$=8$ hours 30 mins	$=4$ hours 50 mins

I E As well as not working over the weekend, Lorna has 35 days of I X holiday per year (this includes Bank Holidays).

How long does Lorna spend driving to work per year?
I N Give your answer in days, hours and minutes.

Clothes shop sales

A pair of trainers cost £32.
The shop had a sale.

SALE PRICE
£24

Now the pair of trainers cost £24.
What is the percentage discount?

Tip: think about how many
lots of £8 in £32. This will
allow you to work out the
discount a a a fraction.
Then work out the
percentage discount.
X Explain the mistake:
IP 'The trainers are $£ 8$ cheaper in the sale.'
A '£8 is one-third of £24.'
I I 'One-third as a percentage is 33% so the answer is 33%. I

E All pairs of shoes are 25% cheaper in
X the sale.
The sale price for these shoes is $£ 48$.
How much did the shoes cost before the sale?

Pages read

I have read 40% of my book.
I have 90 pages left to read.
How many pages have I read so far?

Athletics club

In week 1 there were twice as many girls as boys at athletics club. Six more girls join athletics club in week 2. Now for every boy at athletics club there are three girls.

How many children go to athletics club in week 2?

Fraction of square

Adding fractions

The answer must be a proper fraction Level 1 : I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

IS Example:

I N Explain why the fractions you have chosen cannot be used.

Nick: 'This is not possible because 8 is not a factor of 12. '
I N Sam: 'This can only be done by making $\frac{6}{12}$ as this is one-half.'
I Jim: 'There are different ways that this can be done.'

Fractions of an amount

Level 1: I can find an answer Level 2: I can find three different answers

In how many ways can each of the questions below be answered?
Note: the fractions are always proper fractions.

Question 1:	Question 2:
$\frac{3}{\square} \text { of } \square=60$	$\frac{\square}{3} \text { of } \square=60$
Question 3:	Question 4:
$\frac{5}{\square} \text { of } \square=60$	$\frac{\square}{3} \text { of } \square=60$

Improper fractions

Level 1: I can find an answer
 Level 2: I can find different answers Level 3: I know how many possible answers there are

I R When the denominator used is 4 , there are 4 whole circles and one quarter.
I To answer the question, try a different denominator that gives fewer circles.

Make 2 and a quarter

Level 1: I can find an answer
Level 2: I can find three different answers

Fill in the missing numerators so the fractions are written in order of size, from smallest to largest:

Make one and a quarter

$\frac{3}{\square}+\frac{\square}{\square}=1 \frac{1}{4}$

Make the two fractions that are being added proper fractions
Level 1：I can find a way
Level 2：I can find three ways

ェーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー

I E Circle the fractions that are more than 1 and less than 2

I P	8	$\frac{15}{16}$	$\frac{19}{10}$	$\frac{7}{6}$	$\frac{6}{7}$
I L	$\frac{4}{4}$	$\frac{19}{16}$			

I I
I N Explain your choices．
L－ーーーーーーーーーーーーーーーーーーーーーーーーーーーー・」

Part-finished book

Megan has read $\frac{3}{5}$ of her book.
She has 90 pages left to read.
How many pages long is her book?

I Explain the mistakes:

Mistake 1					Mistake 2				
90					?				
18	18	18	18	18	30	30	30	30	30
$\frac{3}{5} \text { of } 90=\underline{54} \text { pages }$					$\begin{aligned} & \frac{3}{5}=90 \quad \text { so } \quad \frac{1}{5}=30 \\ & 30 \times 5=150 \text { pages } \end{aligned}$				

Fractions digit challenge

How many fractions can be made that are more than 0.5 and less than 0.8 using the following numbers:

$$
2,3,4,5
$$

I E Circle the correct fraction to decimal conversions.
I X Explain the mistakes.

Inside, edge or outside?

$(2,12)$	Are these coordinates on the inside, the edge or on the outside of the rectangle?				
\qquad Inside Edge Outside $(2,4)$ $(14,10)$ $(9,14)$ $(14,9)$ $(13,5)$					

I E Agree or disagree:
I X 'To work out the length of the left edge of the rectangle I L do 12-4. It is 8.'
I A 'To work out the length of the bottom side of the
I I rectangle do 14-4. It is 10.'

Which vertices?

Which of the vertices can be
calculated? (see the red dots)
Give the coordinate points of
these vertices.

Cube nets

Sorting measures

I S Example measures to include in Venn Diagram：			
1 P	stones	millilitres	inches
1 P	miles	metres	
10	miles	metres	grams
R	pints	hours	kilometres
，			
IE Which of these measure is the odd one out？			
1 X	yards	millimetres	
I P			kilograms
L			
1 A	Challenge：how many of the measures could be the odd one out？		
1	The odd one out could be．．．because．．．		
I^{\prime}	The odd one out could also be．．．because．．．		
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーー			
	Draw lines to match each unit to the correct form of measure：		
1 E	decade	temperature	Explain：do light years measure length，
1 X		temperature	
1 T	lux	time	
I E	light	length	brightness of light or time？
1 N			
1 D	centigrade	light	something that is measured in light years．
	acre	area	

Cuboid dimensions

This cuboid is made with two squares and four rectangles.
The volume of the cuboid is $45 \mathrm{~cm}^{3}$.
The length of each edge, measured in cm , is a whole number.

Label the length and width of the rectangular faces of the cuboid.

$\begin{array}{ll} 1 & S \\ 1 & U \\ 1 & P \\ I & P \\ I & O \\ I & R \\ I & T \end{array}$	Tip 1: volume of cuboid $=$ length \times width \times height	Tip 2: the lengths of the edges on the square face are the same	Tip 3: the square's sides can not be 4 cm . $4 \mathrm{~cm} \times 4 \mathrm{~cm} \times \square \mathrm{cm}=45 \mathrm{~cm}^{2}$ 4 is not a factors of 45 , so this number is a decimal. What could be the length of the sides of the square?
$\begin{array}{ll}1 & E \\ 1 & X \\ 1 & P \\ 1 & L \\ 1 & A \\ 1 & \\ 1 & \\ 1\end{array}$	Here are two cube	How many of the smaller cubes fit into the larger cube? (a) 2 (b) 4 (c) 8	
I I I	To double the volume of a cuboid... (a) Double the length of one side (b) Double the length of two of the sides (c) Double the length of all of the sides Explain.		

Branching database

Faces, edges, vertices

Running club graphs (part 1)

At the start of term, there were 12 children in running club. These graphs tell you about the children at running club:

Gender of Children at Running Club

This term, 4 children joined running club. Nobody left. These graphs tell you about the children at running club now:

Year Group of Children at Running Club

Gender of Children
at Running Club

What do you know about the 4 children who joined running club?

Running club graphs (part 2)

Bike race (part 1)

Jen took part in a 40km bike ride. Here, she describes her race:
'I started the race quickly. There was a big uphill climb half-way through the race. I slowed down for the last 5 km but I did a sprint finish.'
Which graph shows Jen's performance in the race?

Jamie took part in a 20km bike race. He describes his ride:
'I started quickly - first 3km of the race was downhill. I slowed down after that, cycling at a similar speed in the middle part of the race. There was a long hill that started 15 km into the race. The fastest part of my race was the last 2 km .
Complete the graph of Jamie's performance in the race:

Bike race (part 2)

Missing angles

Isosceles triangle angles

Clock hands angles

Average puzzle

Three positive whole-numbers have an average of 6 . The difference between the largest and the smallest of these numbers is 5 .
What are the three numbers?
There are two possible answers.

Average ages

There were three children in the room, with an average age of 7 .
Then, Harry walked into the room. Now the average age of the people in the room is 9 .
How old is Harry?

1 s	Three children with an average age of 7 :			Four children with an average age of 9 :				
P	7	7	7	9	9	9		9
P								
1 R	21 We don't know the ages of the three children.							

$1 \mathrm{x}$	Possible or impossible?							
$1{ }_{1} \mathrm{P}$	'The average age of three children is 8 . None of the children are 8 years-old.'							
1 1 1 1 N	'The average age of three brothers is 9 . One of the brothers is 21 years old.'							
1 E	Sophie and Anna are twins. Their younger sister is called Jenna.							
1 1 1 1 N	The twins are 6 years older than Jenna. The average age of the three children is 9 .							
	How old is Jenna?							

Train times

Here is a train timetable for the morning trains from Sheffield to Newcastle:

Sheffield	$6: 20$	$7: 04$	$7: 58$	$8: 45$
Doncaster	$6: 47$	$7: 33$	$8: 25$	$9: 14$
York	$7: 14$	$8: 00$	$8: 52$	$9: 41$
Darlington	$7: 43$	$8: 29$	$9: 21$	$10: 11$
Durham	$8: 01$	$8: 48$	$9: 39$	$10: 30$
Newcastle	$8: 14$	$9: 01$	$9: 52$	$10: 43$

Stan is travelling from Doncaster to Durham. He gets to Doncaster train station at 7:35am.
When will he arrive in Durham?

